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Abstract: We investigate a space-filling criterion based on L2-type discrepancies, namely the uniform
projection criterion, aiming at improving designs’ two-dimensional projection uniformity. Under a general
reproducing kernel, we establish a formula for the uniform projection criterion function, which builds a
connection between rows and columns of the design. For the commonly used discrepancies, we further use
this formula to represent the two-dimensional projection uniformity in terms of the Lp-distances of U-type
designs. These results generalize existing works and reveal new links between the two seemingly unrelated
criteria of projection uniformity and the maximin Lp-distance for U-type designs. We also apply the obtained
results to study several families of space-filling designs with appealing projection uniformity. Because of
good projected space-filling properties, these designs are well adapted for computer experiments, especially
for the case where not all the input factors are active. The Canadian Journal of Statistics 51: 293–311; 2023
© 2022 Statistical Society of Canada
Résumé: Nous étudions un critère de remplissage d’espace basé sur des écarts de type L2, à savoir le critère de
projection uniforme, et ce dans le but d’améliorer l’uniformité des plans de projection en deux dimensions.
En travaillant dans le cadre d’un noyau autoreproduisant général, nous présentons une expression du critère
de projection uniforme qui établit un lien entre les lignes et les colonnes du plan. Pour les écarts couramment
utilisés, nous utilisons en outre cette formule pour exprimer l’uniformité de la projection bidimensionnelle
en termes de distances Lp pour des plans de type U. Ces résultats généralisent les travaux existants et
révèlent de nouveaux liens entre deux critères sans lien apparent, celui de la projection uniforme et celui
du maximin de distances Lp dans des plans de type U. Nous appliquons également les résultats obtenus
pour étudier plusieurs familles de plans d’expérience comblant l’espace ayant une uniformité de projection
intéressante. En raison des bonnes propriétés des projections obtenues, ces plans sont bien adaptés aux
expériences sur ordinateur, en particulier pour le cas où tous les facteurs d’entrée ne sont pas actifs. La
revue canadienne de statistique 51: 293–311; 2023 © 2022 Société statistique du Canada

1. INTRODUCTION

Space-filling designs have been increasingly applied in computer and physical experiments for
studying complex systems (Santner, Williams & Notz, 2003; Fang, Li & Sudjianto, 2006; Lin &
Tang, 2015). A widely used class of space-filling designs is uniform designs (Fang et al., 2018),
which also play a crucial role in quasi-Monte Carlo methods. Let (n, sm) denote an n-run design
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with m factors, each taking s levels from the set s = {0, 1,… , s − 1}. Such a design can
be represented by an n × m matrix D = (xik), where xik ∈ s is the (i, k)th entry, 1 ≤ i ≤ n,
1 ≤ k ≤ m. A uniform design D attempts to scatter its n points as evenly as possible over the
design space by minimizing a measure called discrepancy.

There are various discrepancy metrics proposed from different considerations. Roughly
speaking, a discrepancy defines a measure of the difference between the empirical distribution
of D and the uniform distribution over the design space. Using a method of reproducing
kernel Hilbert spaces, researchers have proposed several popular L2-type discrepancies (Hicker-
nell, 1998a, 1998b; Hickernell & Liu, 2002; Zhou, Fang & Ning, 2013) including the (modified)
L2-star discrepancy, the centred L2-discrepancy (CD), the symmetric L2-discrepancy (SD), the
wrap-around L2-discrepancy (WD), and the mixture discrepancy (MD). Without loss of general-
ity, suppose the experimental domain is the unit hypercube [0, 1]m. For an (n, sm) design D = (xik),
we rescale the design points into the region [0, 1]m through the mapping xik → (2xik + 1)∕(2s).
Let K(x, y) be a reproducing kernel defined on [0, 1]m × [0, 1]m with a multiplicative form

K(x, y) =
m∏

k=1

𝑓 (xk, yk), 𝑓 ∶ [0, 1]2 → ℝ. (1)

Then, by Hickernell (1998a) and Zhou & Xu (2014), for a design D, its L2-type discrepancy
induced by the kernel K(x, y) has the general expression

Disc(D,K) =
[

∫[0,1]2
𝑓 (x, y)dxdy

]m

− 2
n

n∑

i=1

m∏

k=1

(

∫

1

0
𝑓

(
2xik + 1

2s
, y
)

dy
)

+ 1
n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

𝑓

(
2xik + 1

2s
,

2x
𝑗k + 1

2s

)
. (2)

A design D is called a uniform design under the discrepancy (2) if it has the minimum Disc(D,K)
value among all (n, sm) designs.

As observed by Zhou, Fang & Ning (2013), commonly used discrepancies such as the CD
have a dimensionality effect which tends to put more points close to the centre point in the
whole dimensional space as the dimension becomes high. A uniform design might prioritize
uniformity among the overall and high-dimensional projections but have bad low-dimensional
projections. In practice, the response of a system is usually dominated by main effects and
low-order interactions. Under such an effect sparsity scenario, the projection properties of a
design are more important. A good design should focus more on the space-filling properties in
its low-dimensional projections (Santner, Williams & Notz, 2003; Moon, Dean & Santner, 2012;
Woods & Lewis, 2016). Using this idea, the MaxPro designs (Joseph, Gul & Ba, 2015), minimax
projection designs (Mak & Joseph, 2018), and uniform projection designs (Sun, Wang &
Xu, 2019) have been recently proposed. Following the research line of Sun, Wang & Xu (2019),
in this article, we systematically study the uniform projection criterion minimizing the average
discrepancy for all two-dimensional projections of a design. We establish a general formula
representing the uniform projection criterion by a measure of relationships between rows of
the design. We then show the explicit connections between the uniform projection criteria and
the Lp-distances of the design under the commonly used discrepancies. The obtained results
not only reveal links between the two seemingly unrelated criteria of projection uniformity
and the maximin Lp-distance but also inspire us to study and construct better space-filling
designs.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11686

 1708945x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11686 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2023 PROJECTION UNIFORMITY FOR SPACE-FILLING DESIGNS 295

The theory in this article generalizes the previous results in Sun, Wang & Xu (2019)
and Wang, Sun & Xu (2020). In those two works, the authors consider only the uniform
projection criterion based on the CD. Instead, we establish general results for any L2-type
discrepancies (2) and more elaborate results for the commonly used discrepancies. For example,
the (modified) L2-star discrepancy, the CD, and the SD are all special cases of an important
class of L2-type discrepancies called the generalized L2-type discrepancy, which was proposed
by Hickernell (1998a) using Bernoulli polynomials (see (9)). We show in Section 3.1 that the
uniform projection criteria for all generalized L2-type discrepancies are equivalent, resulting in
a unified theory for the (modified) L2-star discrepancy, the CD, and the SD.

The remainder of this article is organized as follows. In Section 2, we introduce some
notations and then give a general representation formula for the uniform projection criteria.
Based on this formula, in Section 3, we further explore the uniform projection criteria and
their connections with the Lp-distances of designs under some commonly used discrepancies. In
Section 4, we study the two-dimensional uniformity of several families of space-filling designs.
Section 5 concludes the article with a discussion. The Supplementary Material includes some
technical details and additional results.

2. UNIFORM PROJECTION CRITERION AND A GENERAL REPRESENTATION
FORMULA

Let D = (xik) be an (n, sm) design with m ≥ 2. It is called a U-type design if the columns are
balanced, that is, in each column, each of the s levels appears the same number of times.
This means that n∕s is an integer. More generally, D is called an orthogonal array of strength
t ≥ 1, denoted as OA(n, sm

, t), if n∕st is an integer and in each set of t-columns of D, all the
level-combinations appear n∕st times. A U-type design is an OA(n, sm

, 1) and, in particular, a
U-type (n, nm) design is called a Latin hypercube design (LHD) and is denoted by LHD(n,m)
(McKay, Beckman & Conover, 1979). LHDs have been widely applied as computer experimental
designs.

The uniform projection criterion was proposed by Sun, Wang & Xu (2019) to improve
the low-dimensional projection properties of a design by minimizing the average CD of all
two-dimensional projections of the design. Here we generalize the uniform projection criterion
to an arbitrary L2-type discrepancy defined in (2) as

ΦDisc(D) =
2

m(m − 1)
∑

|u|=2

Disc(Du,K), (3)

where u is a subset of {1, 2,… ,m}, |u| denotes the cardinality of u, and Du is the projected
design of an (n, sm) design D onto dimensions indexed by the elements of u. We call an (n, sm)
design D a uniform projection design under the discrepancy (2) if it has the minimum ΦDisc
value among all (n, sm) designs.

The following proposition shows that the averageΦDisc value of all k-factor (k ≥ 2) projected
designs is stillΦDisc. Therefore, a uniform projection design tends to have smallΦDisc(Du) values
for all projections. The proof is straightforward and omitted.

Proposition 1. Let D be a U-type (n, sm) design. For any 2 ≤ k ≤ m,

1(
m
k

)
∑

|u|=k

ΦDisc(Du) = ΦDisc(D),

where Du is the projected design onto k factors indexed by u.
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By the definition (3), to obtain a design’s ΦDisc value, we first calculate the discrepancies of
all the column pairwise projections of D and then take an average. Therefore, (3) can be viewed
as a measure of a design’s column pairwise relationships. Theorem 1 establishes a new formula
of (3) for U-type designs from a viewpoint of row pairwise relationships.

Theorem 1. For a U-type (n, sm) design D = (xik),

ΦDisc(D) =
FDisc(D)

n2m(m − 1)
+ CDisc(m, s), (4)

where

FDisc(D) =
n∑

i=1

n∑

𝑗=1

(
m∑

k=1

𝑓

(
2xik + 1

2s
,

2x
𝑗k + 1

2s

))2

− 2n
n∑

i=1

(
m∑

k=1
∫

1

0
𝑓

(
2xik + 1

2s
, y
)

dy

)2

(5)

and

CDisc(m, s) =
(

∫[0,1]2
𝑓 (x, y)dxdy

)2

+ 2
(m − 1)s

s−1∑

i=0

(

∫

1

0
𝑓

(2i + 1
2s

, y
)

dy
)2

− 1
(m − 1)s2

s−1∑

i=0

s−1∑

𝑗=0

𝑓

(
2i + 1

2s
,

2𝑗 + 1
2s

)2

(6)

is a constant only determined by m, s, and the kernel function 𝑓 (⋅, ⋅).

Proof of Theorem 1. For any U-type (n, sm) design D = (xik), let G1 and G2, respectively, denote
the following two terms:

∑

1≤k1<k2≤m

n∑

i=1

(

∫

1

0
𝑓

(2xik1
+ 1

2s
, y
)

dy
)(

∫

1

0
𝑓

(2xik2
+ 1

2s
, y
)

dy
)

and
∑

1≤k1<k2≤m

n∑

i=1

n∑

𝑗=1

𝑓

(2xik1
+ 1

2s
,

2x
𝑗k1
+ 1

2s

)
𝑓

(2xik2
+ 1

2s
,

2x
𝑗k2
+ 1

2s

)
.

Then we can represent (3) as

ΦDisc(D) =
2

n2m(m − 1)
G2 −

4
nm(m − 1)

G1 +
(

∫[0,1]2
𝑓 (x, y)dxdy

)2

. (7)

Let gi
k = ∫

1
0 𝑓

(
2xik+1

2s
, y
)

dy. Then

G1 =
n∑

i=1

∑

1≤k1<k2≤m

gi
k1

gi
k2

=
n∑

i=1

1
2

[(
gi

1 + · · · + gi
m

)2 −
(
(gi

1)
2 + · · · + (gi

m)
2)]
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= 1
2

n∑

i=1

(
m∑

k=1
∫

1

0
𝑓

(
2xik + 1

2s
, y
)

dy

)2

− m
2

n∑

i=1

(
gi

1

)2

= 1
2

n∑

i=1

(
m∑

k=1
∫

1

0
𝑓

(
2xik + 1

2s
, y
)

dy

)2

− nm
2s

s−1∑

i=0

(

∫

1

0
𝑓

(2i + 1
2s

, y
)

dy
)2

.

Similarly, let hi𝑗
k = 𝑓

(
2xik+1

2s
,

2x
𝑗k+1

2s

)
; we have

G2 =
n∑

i=1

n∑

𝑗=1

∑

1≤k1<k2≤m

hi𝑗
k1

hi𝑗
k2

= 1
2

n∑

i=1

n∑

𝑗=1

[(
hi𝑗

1 + · · · + hi𝑗
m

)2
−
((

hi𝑗
1

)2 + · · · +
(
hi𝑗

m

)2
)]

= 1
2

n∑

i=1

n∑

𝑗=1

(
m∑

k=1

𝑓

(
2xik + 1

2s
,

2x
𝑗k + 1

2s

))2

− m
2

n∑

i=1

n∑

𝑗=1

(
hi𝑗

1

)2

= 1
2

n∑

i=1

n∑

𝑗=1

(
m∑

k=1

𝑓

(
2xik + 1

2s
,

2x
𝑗k + 1

2s

))2

− n2m
2s2

s−1∑

i=0

s−1∑

𝑗=0

𝑓

(
2i + 1

2s
,

2𝑗 + 1
2s

)2

.

The desired result follows by substituting G1 and G2 into (7) and simplifying. ◼

Theorem 1 represents the projection uniformity by a new space-filling measure of rows,
that is, the function FDisc(D) defined in (5). Minimizing ΦDisc(D) is equivalent to minimizing
FDisc(D) in (5). As a result, Theorem 1 establishes a link between the relationships of rows and
columns of the design.

In the next section, we take a closer look at the generalized L2-discrepancy (which covers
the (modified) L2-star discrepancy, the CD, and the SD), the WD, and the MD, respectively, to
connect projection uniformity under these commonly used discrepancies with the Lp-distances
of the design.

3. RESULTS FOR THE COMMONLY USED DISCREPANCIES

3.1. Generalized L2-discrepancy

Let 𝜇(⋅) be any arbitrary one-dimensional function satisfying ∫ 1
0 𝜇(x)dx = 0 and ∫ 1

0

(
d𝜇
dx

)2
dx < ∞,

and let 𝛽 be some arbitrary positive constant. For an (n, sm) design D = (xik), we take the kernel
function in (1) to be

𝑓 (x, y) = M + 𝛽

2
(
𝜇(x) + 𝜇(y) + 1

2
B2({x − y}) + B1(x)B1(y)

)
, (8)

where B1(x) = x − 1∕2 and B2(x) = x2 − x + 1∕6 are Bernoulli polynomials of orders 1 and 2,

respectively; {x} = x − ⌊x⌋, ⌊x⌋ is the largest integer not exceeding x; and M = 1 + 𝛽

2∫
1
0

(
d𝜇
dx

)2
dx.
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Then the (squared) generalized L2-discrepancy (abbreviated as GD) of D, proposed by Hicker-
nell (1998a), is defined as

GD(D) = Mm − 2
n

n∑

i=1

m∏

k=1

(
M + 𝛽

2
𝜇

(
2xik + 1

2s

))

+ 1
n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

(
M + 𝛽

2
[
𝜇

(
2xik + 1

2s

)

+ 𝜇

(2x
𝑗k + 1

2s

)
+ 1

2
B2

({2xik − 2x
𝑗k

2s

})

+ B1

(
2xik + 1

2s

)
B1

(2x
𝑗k + 1

2s

)])
. (9)

Next, we will link the uniform projection criterion ΦGD(D) with the distances between
rows of D = (xik). The Lp-distance between the ith row xi = (xi1,… , xim) and the jth row
x
𝑗

= (x
𝑗1,… , x

𝑗m) in D is defined as

dp(xi, x𝑗) =
m∑

k=1

|xik − x
𝑗k|p, (10)

which takes the pth power of the standard Lp-distance for convenience. The minimum Lp-distance
of a design D is defined to be dp(D) = min1≤i<𝑗≤n dp(xi, x𝑗). The maximin distance criterion is a
widely used space-filling criterion which was proposed by Johnson, Moore & Ylvisaker (1990).
An (n, sm) design D is called a maximin Lp-distance design if it maximizes the dp(D) value among
all (n, sm) designs. In practice, the most commonly used distances are the L1-(Manhattan) and
L2-(Euclidean) distances. One formal justification of maximin distance designs given in Johnson,
Moore & Ylvisaker (1990) is that maximin distance designs are asymptotically D-optimal under
the ordinary kriging model as the correlations become weak.

For any U-type (n, sm) design D, the average pairwise Lp-distance, denoted as dp =
∑

1≤i<𝑗≤n dp(xi, x𝑗)∕
(

n
2

)
, is always a constant. Specifically,

d1 =
nm(s2 − 1)
3(n − 1)s

and d2 =
nm(s2 − 1)

6(n − 1)
. (11)

Zhou & Xu (2015) established the following upper bounds:

Lemma 1. For a U-type (n, sm) design D = (xik), d1(D) ≤ ⌊d1⌋, and d2(D) ≤ ⌊d2⌋.

The following theorem representsΦGD(D) as a function of the pairwise L1-distances between
design points in D.

Theorem 2. For a U-type (n, sm) design D = (xik),

ΦGD(D) =
𝛽

4gGD (D)
4n2m(m − 1)s2

+ ̃CGD(m, s), (12)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11686
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where

gGD(D) =
n∑

i=1

n∑

𝑗=1

d2
1(xi, x𝑗) −

2
n

n∑

i=1

(
n∑

𝑗=1

d1(xi, x𝑗)

)2

, (13)

d1(xi, x𝑗) is the L1-distance between xi and x
𝑗

defined in (10), and

̃CGD(m, s) = 𝛽

4

3s3
𝜇1 +

2𝛽4

s2
𝜇

2
1 +

M𝛽

2

6s2
+ 𝛽

4

36
− 𝛽

4

18s2
+ 5𝛽4

144s4

+ 1
m − 1

[(
−𝛽

4

2s
+ 𝛽

4

2s3

)
𝜇1 −

𝛽

4

2s3
𝜇2 +

2𝛽4

s3
𝜇3 +

(
𝛽

4

60
− 𝛽

4

12s2
+ 𝛽

4

15s4

)]

with

𝜇1 =
s−1∑

l=0

𝜇

(2l + 1
2s

)
, 𝜇2 =

s−1∑

l=0

𝜇

(2l + 1
2s

)
(2l − s + 1)2, 𝜇3 =

s−1∑

i=0

s−1∑

𝑗=0

𝜇

(2i + 1
2s

)
|i − 𝑗| .

Proof of Theorem 2. Let 𝜇1, 𝜇2, 𝜇3 be the constants defined above, and 𝜇4 =
∑s−1

l=0𝜇

(
2l+1

2s

)2
.

We now apply Theorem 1 to get Theorem 2. For D = (xik), let zik = (2xik − s + 1)∕(2s).
Denote 𝛼i =

∑m
k=1𝜇

(
zik +

1
2

)
and s0 = (s − 1)∕2. Using the facts that d2(zi, 0) = d2(xi, s0)∕s2

and d1(zi, z𝑗) = d1(xi, x𝑗)∕s, and Lemmas 2 and 3 in the Supplementary Material, we have that
the term FDisc(D) defined in (5) in Theorem 1 equals

FGD(D) =
n∑

i=1

n∑

𝑗=1

(
m∑

k=1

𝑓

(
zik +

1
2
, z

𝑗k +
1
2

))2

− 2n
n∑

i=1

(
m∑

k=1
∫

1

0
𝑓

(
zik +

1
2
, y
)

dy

)2

= 𝛽

4

(
n∑

i=1

n∑

𝑗=1

(
𝛼i + 𝛼

𝑗

+
d2(zi, 0)

2
+

d2(z𝑗 , 0)
2

−
d1(zi, z𝑗)

2

)2

− 2n
n∑

i=1

𝛼

2
i

)

+ n2m2
(

M + 𝛽

2

12

)2

−
n2m2(s2 − 1)

(
M + 𝛽

2

12

)
𝛽

2

6s2

+
4n2m2

(
M + 𝛽

2

12

)
𝛽

2

s
𝜇1 − 2n2m2M2 − 4n2m2M𝛽

2

s
𝜇1

= 𝛽

4

4s2
gGD(D) + n2m2

(
2𝛽4

s2
𝜇

2
1 +

𝛽

4

3s3
𝜇1 −M2 + M𝛽

2

6s2
+ 𝛽

4

36
− 𝛽

4

18s2
+ 5𝛽4

144s4

)
,

where gGD(D) is defined in (13).

Besides, the term
∑s−1

i=0

[
∫

1
0 𝑓 ((2i + 1)∕(2s), y) dy

]2
in Theorem 1 equals

s−1∑

i=0

(
M + 𝛽

2
𝜇

(2i + 1
2s

))2
= M2s + 2M𝛽

2
𝜇1 + 𝛽

4
𝜇4
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300 LIU, WANG AND SUN Vol. 51, No. 1

and the term
∑s−1

i=0
∑s−1

𝑗=0

[
𝑓 ((2i + 1)∕(2s), (2𝑗 + 1)∕(2s))

]2 equals

s−1∑

i=0

s−1∑

𝑗=0

(
M + 𝛽

2

12
+ 𝛽

2
[
𝜇

(2i + 1
2s

)
+ 𝜇

(
2𝑗 + 1

2s

)
+ 1

2
||||
2i − s + 1

2s

||||

2

+1
2
||||
2𝑗 − s + 1

2s

||||

2
− 1

2
||||
i − 𝑗

s

||||

])

=
(

4M𝛽

2s + 𝛽

4s
2
− 𝛽

4

6s

)
𝜇1 + 2𝛽4

𝜇

2
1 +

𝛽

4

2s
𝜇2 −

2𝛽4

s
𝜇3 + 2𝛽4s𝜇4

+
(

M2s2 + M𝛽

2

6
+ 𝛽

4s2

90
+ 𝛽

4

36
− 23𝛽4

720

)
.

Then the constant CDisc(m, s) defined in (6) in Theorem 1 simplifies to

CGD(m, s) = M2 + 1
m − 1

[(
−𝛽

4

2s
+ 𝛽

4

6s3

)
𝜇1 −

2𝛽4

s2
𝜇

2
1 −

𝛽

4

2s3
𝜇2 +

2𝛽4

s3
𝜇3

+
(

M2 − M𝛽

2

6s2
− 𝛽

4

90
− 𝛽

4

36s2
+ 23𝛽4

720s4

)]
.

Finally, the desired result follows by combining the above equations and some algebra. ◼

Theorem 2 shows that, regardless of the choice of 𝜇(⋅), M, and 𝛽 in (8), the two-dimensional
projection uniformity for all different GDs is only related to the L1-distances of the design.
The following three examples discuss the (modified) L2-star discrepancy, the CD, and the SD,
respectively.

Example 1 (The (modified) L2-star discrepancy). For an (n, sm) design D = (xik), the (modified)
L2-star discrepancy (Hickernell, 1998a) is

D∗
2(D) =

(4
3

)m
− 2

n

n∑

i=1

m∏

k=1

(
3
2
− 1

2

(
2xik + 1

2s

)2
)

+ 1
n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

(
2 −max

(
2xik + 1

2s
,

2x
𝑗k + 1

2s

))
.

Following Hickernell (1998a), D∗
2 is a special case of the GD with

𝜇(x) = −x2

2
+ 1

6
, 𝛽 = 1, and M = 4

3
.

Then by Lemma 2 in the Supplementary Material and some calculations

𝜇1 = −
1
2

s−1∑

i=0

||||
2i + 1

2s

||||

2
+ s

6
= 1

24s
,
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2023 PROJECTION UNIFORMITY FOR SPACE-FILLING DESIGNS 301

𝜇2 = −2s2
s−1∑

i=0

||||
2i + 1

2s

||||

2||||
2i + 1 − s

2s

||||

2
+ 2s2

3

s−1∑

i=0

||||
2i + 1 − s

2s

||||

2
= − s3

90
+ 5s

72
− 7

120s
,

𝜇3 = −
s
2

s−1∑

i=0

s−1∑

𝑗=0

||||
2i + 1

2s

||||

2 ||||
i − 𝑗

s

||||
+ s

6

s−1∑

i=0

s−1∑

𝑗=0

||||
i − 𝑗

s

||||
= − s3

360
+ s

36
− 1

40s
.

Hence,

ΦD∗2
(D) =

gD∗2
(D)

4n2m(m − 1)s2
+ ̃CD∗2

(m, s),

where gD∗2
(D) = gGD(D) in (13) and

̃CD∗2
(m, s) =

( 1
36
+ 1

6s2
+ 5

96s4

)
+ 1

m − 1

( 1
60
− 1

12s2
+ 1

15s4

)
.

Example 2 (The CD). For an (n, sm) design D = (xik)

CD(D) =
(13

12

)m
− 2

n

n∑

i=1

m∏

k=1

(
1 + 1

2
||||
2xik + 1 − s

2s

||||
− 1

2
||||
2xik + 1 − s

2s

||||

2
)

+ 1
n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

(
1 + 1

2
||||
2xik + 1 − s

2s

||||
+ 1

2

|||||

2x
𝑗k + 1 − s

2s

|||||
− 1

2
||||
xik − x

𝑗k

s

||||

)
.

Following Hickernell (1998a), the CD is a special case of the GD with

𝜇(x) = −1
2

B2({x − 1∕2}) = −1
2
|x − 1∕2|2 + 1

2
|x − 1∕2| − 1

12
, 𝛽 = 1, and M = 13

12
.

Then by Lemma 2 in the Supplementary Material and some calculations similar to those in
Example 1, we have

𝜇1 = −
1

48s
+ (−1)s

16s
, 𝜇2 =

7s3

720
− s

72
− 13

480s
− (−1)s

32s
,

𝜇3 =
7s3

2880
− 5s

576
+ s(−1)s

64
− 1

640s
− 15(−1)s

640s
, and

ΦCD(D) =
gCD(D)

4n2m(m − 1)s2
+ ̃CCD(m, s),

where gCD(D) = gGD(D) in (13) and

̃CCD(m, s) =
(

1
36
+ 1

8s2
+ 7

192s4
+ (−1)s

64s4

)
+ 1

m − 1

( 1
60
− 1

12s2
+ 1

15s4

)
.

One can verify that this coincides with Theorem 2 of Sun, Wang & Xu (2019). Thus Theorem 2
generalizes the result in Sun, Wang & Xu (2019).
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302 LIU, WANG AND SUN Vol. 51, No. 1

Example 3 (The SD). For an (n, sm) design D = (xik)

SD(D) =
(4

3

)m
− 2

n

n∑

i=1

m∏

k=1

(
1 + 2

(
2xik + 1

2s

)
− 2

(
2xik + 1

2s

)2
)

+ 2m

n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

(
1 −

||||
xik − x

𝑗k

s

||||

)
.

Following Hickernell (1998a), the SD is a special case of the GD with

𝜇(x) = −1
2

B2(x) = −
1
2

(
x − 1

2

)2
+ 1

24
, 𝛽 = 2, and M = 4

3
.

Similar to Examples 1 and 2, we have

𝜇1 =
1

24s
, 𝜇2 = −

s3

90
+ 5s

72
− 7

120s
, 𝜇3 = −

s3

360
+ s

36
− 1

40s
, and

ΦSD(D) =
4gSD(D)

n2m(m − 1)s2
+ ̃CSD(m, s),

where gSD(D) = gGD(D) in (13) and

̃CSD(m, s) =
(4

9
+ 5

6s4

)
+ 1

m − 1

( 4
15
− 4

3s2
+ 16

15s4

)
.

We summarize Examples 1–3 in the following corollary.

Corollary 1. For an (n, sm) design D = (xik), the uniform projection criteria under the (modified)
L2-star discrepancy, the CD, and the SD are all equivalent to minimizing gGD(D), as defined in
(13).

Now we consider the lower and upper bounds for the uniform projection criterion ΦGD. As
all two-dimensional projection GD’s are equivalent by Theorem 2, in the following we only
consider lower and upper bounds for

gGD(D) =
n∑

i=1

n∑

𝑗=1

d2
1(xi, x𝑗) −

2
n

n∑

i=1

(
n∑

𝑗=1

d1(xi, x𝑗)

)2

,

defined in (13), which is a quadratic form of {d1(xi, x𝑗), i < 𝑗} and has been studied for the CD in
Theorem 3 of Sun, Wang & Xu (2019) and Lemma 5 of Wang, Sun & Xu (2020). We summarize
and rephrase these results in the following theorem in terms of gGD.

Theorem 3. For a U-type (n, sm) design D, we have gLB
GD ≤ gGD(D) ≤ gUB

GD, where

gLB
GD = −

(n − 2)n2m2
(
s2 − 1

)2

9(n − 1)s2
and gUB

GD = −
n2m2

(
s4 − 5s2 + 4

)

18s2
.

Furthermore, the lower bound gLB
GD is achieved if and only if d1(xi, x𝑗) = d1 in (11) for all

1 ≤ i < 𝑗 ≤ n.
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2023 PROJECTION UNIFORMITY FOR SPACE-FILLING DESIGNS 303

Remark 1. Using Theorem 4 of Sun, Wang & Xu (2019), we can get another lower bound of
gGD(D) for U-type (n, sm) designs, that is

gGD(D) ≥ gLB′
GD = −

n2m
(
s2 − 1

) [
(5m − 2)s2 − 5m − 7

]

45s2
,

and this bound is achieved if and only if D is an OA(n, sm
, 2). The obtaining of the lower bound gLB′

GD
utilizes the lower bounds for the CD in Ma, Fang & Lin (2003). Therefore, we have that gGD(D) ≥
max

{
gLB

GD, g
LB′
GD

}
. The lower bound gLB′

GD is sharper when m ≤ (2s2 + 7)(n − 1)∕(5s2 − 5), and

gLB
GD is sharper otherwise (Wang, Sun & Xu, 2020). In this article, we are more interested in gLB

GD,
as it is more related to the maximin L1-distance criterion, as gLB

GD is attained if and only if the
design D is an L1-equidistant maximin distance U-type design. Thus, in the following we focus
only on the lower bound gLB

GD.

Lower and upper bounds for the uniform projection criterion ΦGD, say ΦLB
GD, ΦLB′

GD, and ΦUB
GD

(corresponding to gLB
GD, gLB′

GD, and gUB
GD, respectively), based on any explicit GD can be easily

obtained by (12), Theorem 3, and Remark 1. In particular

• for the (modified) L2-star discrepancy

ΦLB
D∗2
=

5m
(
n
(
64s2 + 7

)
+ 8s4 − 80s2 + 1

)
− (n − 1)

(
16s4 + 360s2 − 21

)

1440(m − 1)(n − 1)s4
,

ΦLB′
D∗2

= 64s2 + 7
288s4

, ΦUB
D∗2
=

5m
(
4s4 + 68s2 − 1

)
− 16s4 − 360s2 + 21

1440(m − 1)s4
;

• for the CD

ΦLB
CD =

5m(4s4 + 2(13n − 17)s2 − n + 5) − (n − 1)(8s4 + 150s2 − 33)
720(n − 1)(m − 1)s4

+ 1 + (−1)s

64s4
,

ΦLB′
CD = 26s2 − 1

144s4
+ 1 + (−1)s

64s4
,

ΦUB
CD =

(10m − 8)s4 + (140m − 150)s2 − 25m + 33
720(m − 1)s4

+ (−1)s + 1
64s4

; and

• for the SD

ΦLB
SD =

5m
(
16(n − 2)s2 + 7n + 8s4 + 1

)
− (n − 1)

(
16s4 + 120s2 − 21

)

90(m − 1)(n − 1)s4
,

ΦLB′
SD = 7

18s4
+ 8

9s2
, ΦUB

SD =
5m

(
4s4 + 20s2 − 1

)
− 16s4 − 120s2 + 21

90(m − 1)s4
.

We can evaluate the quality of a design D by the relative efficiency

ΦRE
GD =

ΦUB
GD − ΦGD(D)

ΦUB
GD − Φ

LB
GD

=
gUB

GD − gGD(D)

gUB
GD − gLB

GD

.
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304 LIU, WANG AND SUN Vol. 51, No. 1

Here, only the value and bounds of gGD(D) are required in the calculation. Designs with higher
ΦRE

GD are preferred as space-filling designs with better two-dimensional projection uniformity; in
particular, ΦRE

GD = 1 for a maximin L1-equidistant design, whereas ΦRE
GD can be small for a bad

design. For example, if we take s = n in (S5) in the Supplementary Material to get an LHD ̃D,
then ΦRE

GD( ̃D) = 1∕5 + 2∕(5n) → 1∕5 as n →∞.

3.2. Wrap-around L2-discrepancy and Mixture Discrepancy
In this subsection, we focus on the projection uniformity under the WD proposed by Hick-
ernell (1998b) and the MD proposed by Zhou, Fang & Ning (2013). For an (n, sm) design
D = (xik),

WD(D) = −
(4

3

)m
+ 1

n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

(
3
2
−
||||
xik − x

𝑗k

s

||||
+
||||
xik − x

𝑗k

s

||||

2)

and

MD(D) =
(19

12

)m
− 2

n

n∑

i=1

m∏

k=1

(
5
3
− 1

4
||||
2xik − s + 1

2s

||||
− 1

4
||||
2xik − s + 1

2s

||||

2
)

+ 1
n2

n∑

i=1

n∑

𝑗=1

m∏

k=1

(
15
8
− 1

4
||||
2xik − s + 1

2s

||||
− 1

4

|||||

2x
𝑗k − s + 1

2s

|||||

−3
4
||||
xik − x

𝑗k

s

||||
+ 1

2
||||
xik − x

𝑗k

s

||||

2)
.

They can be induced by taking 𝑓 (x, y) = 3∕2 − |x − y| + |x − y|2 and

𝑓 (x, y) = 15
8
− 1

4
||||
x − 1

2
||||
− 1

4
||||
y − 1

2
||||
− 3

4
|x − y| + 1

2
|x − y|2

as the kernel functions in (1).

Theorem 4. For a U-type (n, sm) design D = (xik),

ΦWD(D) =
gWD(D)

n2m(m − 1)s4
+ ̃CWD(m, s), (14)

where

gWD(D) =
n∑

i=1

n∑

𝑗=1

(
s ⋅ d1(xi, x𝑗) − d2(xi, x𝑗)

)2
, (15)

dp(xi, x𝑗) is defined in (10) with p = 1, 2, and

̃CWD(m, s) = − 1
36
− 1

30(m − 1)
+ 1

2s2
+ 1

30(m − 1)s4
.

The proofs of Theorem 4 and all subsequent theorems are given in the Supplementary
Material. Theorem 4 is parallel to Theorem 2; it shows that the uniform projection criterion under
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2023 PROJECTION UNIFORMITY FOR SPACE-FILLING DESIGNS 305

the WD is only related to s ⋅ d1(xi, x𝑗) − d2(xi, x𝑗), that is, a combination of L1- and L2-distances,
for a U-type design D = (xi𝑗). By the fact that for any two rows xi and x

𝑗

,

d2(xi, x𝑗) =
m∑

k=1

(xik − x
𝑗k)2 ≤ (s − 1)

m∑

k=1

|xik − x
𝑗k| = (s − 1)d1(xi, x𝑗), (16)

we always have s ⋅ d1(xi, x𝑗) − d2(xi, x𝑗) ≥ 0.
The following theorem considers the lower and upper bounds for the gWD(D) defined in (15).

Theorem 5. For a U-type (n, sm) design D, we have gLB
WD ≤ gWD(D) ≤ gUB

WD, where

gLB
WD =

m2n3
(
s2 − 1

)2

36(n − 1)
and gUB

WD =
n2m2

(
s4 − 1

)

30
.

Furthermore, the lower bound gLB
WD is achieved if and only if s ⋅ d1(xi, x𝑗) − d2(xi, x𝑗) =

nm(s2 − 1)∕(6n − 6) for all 1 ≤ i < 𝑗 ≤ n, and the upper bound gUB
WD is achieved when D is equal

to the design ̃D in (S5) in the Supplementary Material.

For the MD, Theorem 6 gives a conclusion similar to that of Theorem 4.

Theorem 6. For a U-type (n, sm) design D = (xik),

ΦMD(D) =
gMD(D)

16n2m(m − 1)s4
+ ̃CMD(m, s), (17)

where

gMD(D) =
n∑

i=1

n∑

𝑗=1

(
3s ⋅ d1(xi, x𝑗) − 2d2(xi, x𝑗)

)2

− 2
n

n∑

i=1

[
n∑

𝑗=1

(3s ⋅ d1(xi, x𝑗) − 2d2(xi, x𝑗))

]2

, (18)

dp(xi, x𝑗) is defined in (10) with p = 1, 2 and

̃CMD(m, s) = 1
36
+ 49

144s2
+ 59

768s4
− 17(−1)s

768s4
+ 1

48(m − 1)

(
1 − 5

s2
+ 4

s4

)
.

For gMD(D) defined in (18), it also follows by (16) that 3s ⋅ d1(xi, x𝑗) − 2d2(xi, x𝑗) ≥ 0.
Bounds for gMD(D) are given in Theorem 7.

Theorem 7. For a U-type (n, sm) design D, we have gLB
MD ≤ gMD(D) ≤ gUB

MD, where

gLB
MD = −

4m2(n − 2)n2
(
s2 − 1

)2

9(n − 1)
and gUB

MD = −
29m2n2

(
s4 − 5s2 + 4

)

90
.

Furthermore, the lower bound gLB
WD is achieved if and only if 3s ⋅ d1(xi, x𝑗) − 2d2(xi, x𝑗) =

2mn(s2 − 1)∕(3n − 3) for all 1 ≤ i < 𝑗 ≤ n.
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306 LIU, WANG AND SUN Vol. 51, No. 1

When D is simultaneously an L1- and L2-equidistant maximin distance U-type design, the
conditions that s ⋅ d1(xi, x𝑗) − d2(xi, x𝑗) = nm(s2 − 1)∕(6n − 6) and 3s ⋅ d1(xi, x𝑗) − 2d2(xi, x𝑗) =
2mn(s2 − 1)∕(3n − 3) for all 1 ≤ i < 𝑗 ≤ n are satisfied, and thus the lower bounds gLB

WD and gLB
MD

are both attained. By Theorems 4–7, we can get lower and upper bounds for ΦWD and ΦMD as

ΦLB
WD =

(5m − n + 1)s4 + 10[m(8n − 9) − 9n + 9]s2 + 5mn + 6n − 6
180(m − 1)(n − 1)s4

,

ΦUB
WD =

s4 + 90s2 − 6
180s4

,

ΦLB
MD =

m
[
16(57n − 65)s2 + 113n + 64s4 − 49

]
− (n − 1)

[
16s2

(
s2 + 64

)
− 15

]

2304(m − 1)(n − 1)s4
− 17(−1)s

768s4
,

ΦUB
MD =

m
(
88s4 + 5080s2 − 43

)
− 80

(
s2 + 64

)
s2 + 75

11520(m − 1)s4
− 17(−1)s

768s4
,

and define the relative efficienciesΦRE
WD andΦRE

MD similarly to how we definedΦRE
GD for evaluating

any U-type design D.
At the end of this section, we mention that all the formulas for the GD, WD, and MD

in Theorems 2, 4, and 6 are also important from the computational perspective. Computing
discrepancy with (12), (14), or (17) has a complexity of O(n2m), which is faster than computing
it with (3), which has a complexity of O(n2m2). The complexity O(n2m) is the same order of
complexity as computing the popular Maxmin criterion (Morris & Mitchell, 1995) and MaxPro
criterion (Joseph, Gul & Ba, 2015). As an application, standard stochastic searching algorithms
such as simulated annealing or threshold-accepting algorithms can be used for constructing
uniform projection U-type designs based on the proposed ΦGD,ΦWD, and ΦMD criteria. We give
the details of such a threshold-accepting algorithm in Section 3.1 of the Supplementary Material.

4. SPACE-FILLING DESIGNS WITH GOOD PROJECTION UNIFORMITY

In this section, we investigate the two-dimensional projection uniformity of several families of
space-filling designs. These designs were proposed using the maximin distance criterion without
taking projection properties into account, as well as other optimal projection criteria from
different perspectives. Using the projection uniformity theories and the numerical simulations,
we show that these designs also have good two-dimensional projection uniformity and thus are
suitable for factor screening in computer experiments (Moon, Dean & Santner, 2012; Woods &
Lewis, 2016).

4.1. Latin Hypercube Designs Based on Good Lattice Point Designs
LHDs based on good lattice point (GLP) designs have been recently studied by Wang, Xiao &
Xu (2018), and Zhou & Xu (2015) under the maximin L1-distance criterion, and by Sun, Wang
& Xu (2019), and Wang, Sun & Xu (2020) under the uniform projection ΦCD criterion. Let
(h1,… , hm) be a row vector with all elements coprime to n, where n is a positive integer. A GLP
design is an LHD(n,m), denoted as D = (xik), constructed by xik = i × hk (mod n) for i = 1,… , n
and k = 1,… ,m. Obviously, for a given n, GLP designs exist for any 1 ≤ m ≤ 𝜑(n), where 𝜑(n)
is the number of positive integers coprime to n and less than n. Let

W(x) =

{
2x, 0 ≤ x < n∕2
2(n − x) − 1, n∕2 ≤ x < n,

and w(x) =

{
2x, 0 ≤ x < n∕2
2(n − x), n∕2 ≤ x < n.

We consider the following three families of LHDs based on GLP designs.
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2023 PROJECTION UNIFORMITY FOR SPACE-FILLING DESIGNS 307

• LHD(n, n) where n = (p − 1)∕2 and p is an odd prime.

Let D be a (2n + 1) × (2n) GLP design and A1 be the n × n leading principal submatrix of
D, where n = (p − 1)∕2 and p is an odd prime. Theorem 4 of Wang, Xiao & Xu (2018) shows
that E = w(A1)∕2 is an L1-equidistant LHD(n, n) with d1(E) = d1 = n(n + 1)∕3, where w(A1)
represents the n × n design with all entries in A1 transformed by w(⋅). By Theorem 3, gGD(E) is
equal to gLB

GD defined in Theorem 3, and the relative efficiency ΦRE
GD(E) (including ΦRE

D∗2
, ΦRE

CD,

and ΦRE
SD) is always 1.

It is known that two rows with a larger L1-distance between them also tend to have larger
L2-distance between them, and vice versa. Therefore, the above L1-equidistant E should also be
efficient under the maximin L2-distance criterion. We expect that E also has good performance
under theΦWD andΦMD criteria. To examine this, we plot in Figure 1 theΦRE

GD (solid line),ΦRE
WD

(dashed line), and ΦRE
MD (dotted line) values for the LHD(n, n)’s E = (xik) with p < 100 (see the

subplot of n = (p − 1)∕2). We see that the relative ΦWD- and ΦMD-efficiencies are also very
close to 1 (the ΦRE

GD line) and approach 1 quickly as p increases.

• LHD(n, n − 1) where n = p is an odd prime.

Let D be an n × (n − 1) GLP design, where n = p is an odd prime. For b ∈ n = {0,… ,

n − 1}, let Db = D + b = (xik + b) (mod n) be a linear permutation of the GLP design D. Let
Eb∗ = W(Db∗ ), where b∗ = W−1 ((n − 1)∕2 ± c),

c =

{
c0, c0 ≥

√
(n2 − 4)∕12 − 1∕2,

c0 + 1, c0 <

√
(n2 − 4)∕12 − 1∕2,

and c0 = ⌊
√
(n2 − 1)∕12⌋. Theorem 4 of Sun, Wang & Xu (2019) and Proposition 3 of Wang,

Sun & Xu (2020) show that the LHD Eb∗ not only has a large minimum L1-distance (it nearly

n = (p−1) / 2
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FIGURE 1: Plots of the ΦRE
GD (solid line), ΦRE

WD (dashed line), and ΦRE
MD (dotted line) values for the LHDs

with n = (p − 1)∕2, p, 2p, 3p, 5p, 7p, p < 100.
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308 LIU, WANG AND SUN Vol. 51, No. 1

achieves the bound in Lemma 1) but also minimizes ΦCD(Eb) among all b ∈ n with its
value smaller than (1 + 5∕n2)ΦLB

CD. Since all the GDs are equivalent by our Theorem 2, we
have that ΦRE

GD(Eb∗ ) = ΦRE
D∗2
(Eb∗ ) = ΦRE

SD(Eb∗ ) = ΦRE
CD(Eb∗ ) = 1 − O(1∕n3). We also expect that

Eb∗ performs well under the ΦWD and ΦMD criteria. Figure 1 shows the plots of the ΦRE
GD, ΦRE

WD,
and ΦRE

MD values for the LHD(n, n − 1)’s Eb∗ with p < 100 (see the subplot of n = p). All three
of the relative uniform projection efficiencies are higher than 0.9 when p > 7 and approach 1
quickly as p increases.

• LHD(n, (k − 1)(p − 1)) where n = kp, k ≠ p, k is a prime, and p is an odd prime.

Let D be an n × (k − 1)(p − 1) GLP design, Db = D + b = (xik + b) (mod n) where n = kp,
k is a prime and p is an odd prime, and b = ⌊n(1 + 1∕

√
3)∕4⌋. Then Eb = W(Db) gives a good

space-filling LHD(n, (k − 1)(p − 1)). We consider the cases of k = 2, 3, 5, and 7 for illustration.
By Wang, Xiao & Xu (2018), the LHD Eb has large minimum L1-distance. By Wang, Sun &
Xu (2020) and our Theorem 2, the relative efficiencyΦRE

GD(Eb) = ΦRE
D∗2
(Eb) = ΦRE

CD(Eb) = ΦRE
SD(Eb)

is very high and approaches 1 quickly as p grows. The subplots titled with n = kp (k = 2, 3, 5, 7)
of Figure 1 show the relative efficiencies of Eb

(
ΦRE

GD,ΦRE
WD, andΦRE

MD

)
for p < 100. As expected,

the LHD(n, (k − 1)(p − 1))’s Eb are also very efficient under the ΦWD and ΦMD criteria.

4.2. Maximin Distance U-type (n, sm) Designs with s < n
Suppose that A is a U-type (n, sm1 ) design and B is a U-type (s, qm2 ) design. The replacement
method generates a U-type (n, qm1m2 ) design by replacing the uth level of A by the (u + 1)th row
of B for u = 0, 1,… , s − 1. Using B as the maximin or nearly maximin distance LHDs such as
those constructed in Wang, Xiao & Xu (2018), Li, Liu & Tang (2021) obtained many maximin or
nearly maximin distance U-type designs. These designs are also expected to be highly efficient
under the uniform projection ΦGD, ΦWD, and ΦMD criteria. For illustration, we generate the
designs in Tables 1 and 2 of Li, Liu & Tang (2021) (by their Theorem 2 and Propositions 1
and 2) with run size n < 100 and calculate their relative efficiencies ΦRE

GD, ΦRE
WD, and ΦRE

MD. The
numerical results are shown in Table 1, in which we can see that all these U-type designs have
relative efficiencies larger than 0.99 under the three uniform projection criteria.

4.3. MaxPro Designs and Minimax Projection Designs
We also explore the two-dimensional projection uniformity of three types of popular space-filling
designs constructed to have good projections, namely MaxPro designs (Joseph, Gul & Ba, 2015),
minimax designs and minimax projection designs by Mak & Joseph (2018). Let D = (xi𝑗) be an

TABLE 1: Relative efficiency values ΦRE
GD, ΦRE

WD, and ΦRE
MD for some space-filling U-type (n, sm) designs.

(n, sm) ΦRE
GD ΦRE

WD ΦRE
MD (n, sm) ΦRE

GD ΦRE
WD ΦRE

MD

(9, 312) 1 1 1 (25, 530) 0.9950 0.9903 0.9928

(27, 339) 1 1 1 (49, 748) 1 0.9937 0.9988

(81, 3120) 1 1 1 (64, 872) 1 0.9989 0.9998

(16, 415) 0.9900 1 0.9962 (81, 980) 0.9983 0.9995 0.9992

(64, 463) 0.9978 1 0.9992 (81, 990) 1 0.9992 0.9998

(25, 524) 1 0.9987 0.9997

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11686
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2023 PROJECTION UNIFORMITY FOR SPACE-FILLING DESIGNS 309

FIGURE 2: Box plots of the ΦCD, ΦWD, and ΦMD values of the 100 MaxPro, minimax, minimax projection,
and random designs.

n × m design with xi𝑗 ∈ [0, 1] (not necessarily an LHD or a U-type design). The MaxPro criterion
is to minimize

𝜓(D) =
⎧
⎪
⎨
⎪⎩

1(
n
2

)
n−1∑

i=1

n∑

𝑗=i+1

1∏m
k=1(xik − x

𝑗k)2

⎫
⎪
⎬
⎪⎭

1∕m

.

A minimax design minimizes the maximum distance from any point in this space to its nearest
design point. A minimax projection design is obtained by refining a minimax design using the
MaxPro criterion 𝜓 .

The R packages MaxPro and minimaxdesign developed by Joseph, Gul & Ba (2015)
and by Mak & Joseph (2018), respectively, are efficient for generating the three types of designs.
We numerically study the performances of the three types of designs using nine simulation
settings with n = 15, 20, 30 and m = 3, 5, 8. For each (n,m) combination, we run the MaxPro,
minimax, and miniMaxPro functions 100 times with default settings to generate 100 MaxPro,
minimax, and minimax projection designs and then compute their ΦCD, ΦWD, and ΦMD values.
The performances under the (modified) L2-star discrepancy and the SD are close to those
under the CD and thus are omitted. Note that the computation of ΦDisc under a given L2-type
discrepancy should use the original definition (3) since these designs are not U-type designs.
Figure 2 shows the box plots of the ΦCD, ΦWD, and ΦMD values of different designs for the case
of (n = 20,m = 3). The results for the other eight cases are similar. The plots of 100 random
designs uniformly distributed over the design space are also provided for comparison. From
Figure 2, we see that the MaxPro and minimax projection designs have much better projection
uniformity than the minimax designs and random designs under theΦCD,ΦWD, andΦMD criteria.
This meets our expectations because the MaxPro and minimax projection criteria all focus on
projection properties. The MaxPro designs slightly outperform the minimax projection designs.
The minimax designs are better than the random designs under theΦCD andΦMD criteria. Notice
that the R package MaxPro can also generate MaxPro LHDs. When restricted to LHDs, the
MaxPro LHDs again have good projection uniformity; see the numerical comparisons in Section
3.2 of the Supplementary Material for more information.

5. DISCUSSION

A uniform projection criterion that focuses on two-dimensional uniformity is appealing for
space-filling designs. We established a general formula of two-dimensional uniformity for
U-type designs and further applied it to obtain more explicit results for the commonly used
discrepancies. These results generalized and improved the existing results and also revealed
new connections between the two popular space-filling criteria—uniformity and the maximin

DOI: 10.1002/cjs.11686 The Canadian Journal of Statistics / La revue canadienne de statistique
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310 LIU, WANG AND SUN Vol. 51, No. 1

distance. We also studied several recently proposed families of optimal space-filling designs.
These designs were shown to have desirable performance under various uniform projection
criteria. Therefore, these designs are well adapted for computer experiments, especially for early
stage experiments where there are a large number of factors to be explored but only a few of
them are important.

It should be mentioned that the criterion function (3) takes the average discrepancy
over all two-dimensional projections. Alternatively, one can define a criterion to minimize
max|u|=2 Disc(Du,K), that is, the worst case discrepancy value over all possible two-dimensional
projections in D. Although the two criteria are not equivalent, our preliminary numerical studies
show that minimizing (3) tends to produce a design with a small max|u|=2 Disc(Du,K) value; see
Section 3.3 of the Supplementary Material for more information.

Some possible future studies are presented. First, this article focuses on symmetric designs
(i.e., where the levels of all factors are equal). In practice, asymmetric designs (i.e., designs with
at least two different levels) are also frequently demanded; see Elsawah & Qin (2016) and Yang,
Zhou & Zhang (2019) for some recent developments. A natural progression of this work is to
extend the obtained results to asymmetric designs. Second, it will be meaningful to construct
uniform projection U-type designs by combining the obtained results with some combinatorial
methods. A possible method with great theoretical beauty is rotating groups of factors of
orthogonal arrays (Sun, Pang & Liu, 2011; Sun & Tang, 2017). Finally, it is an interesting and
important problem to relate the uniform projection criterion (3) to other statistical design criteria.
Recently, Sun & Tang (2021) showed that the uniform projection criterion is strongly related
to the stratification properties of the design. They established novel connections between the
uniform projection criterion and strong orthogonal arrays. Under the Gaussian process model,
Joseph, Gul & Ba (2015) showed that the MaxPro criterion tends to agree with the maximum
entropy criterion. In Section 3.4 of the Supplementary Material, we provide a preliminary study
on the connection between the uniform projection criterion and the maximum entropy criterion.
Our numerical results suggest that the uniform projection criterion also tends to agree with
the maximum entropy criterion. We will explore more rigorous theoretical justifications of the
uniform projection criterion along the lines of Sun & Tang (2021) and Joseph, Gul & Ba (2015)
in the future.
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